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Abstract

A smart focal plane array has been designed that incorporates the func-
tions of edge extraction, brightness adaptation, and moving-object
detection. The design is based on a concept first presented by Mead and
Mahowald, who built a silicon retina that was modeled on the distal
portion of the vertebrate retina. Their chip generated, in real time, out-
puts that correspond directly to signals observed in the corresponding
levels of biological retinas; the design employed a resistive network to
perform signal aggregation between cells.

The design presented in this report is compatible with complementary
metal oxide semiconductor (CMOS) technology and can be readily fabri-
cated through MOSIS (MOS implementation system). The layout of a
prototype array was created with the MOSIS scalable CMOS n-well
analog 2.0-µm process. Although the array presented here uses Si
phototransistors, the architecture is applicable to any semiconductor
system in which pnp transistors and MOSFETs (MOS field-effect transis-
tors) can be produced. Therefore it could be adapted for use with GaAs
quantum-well infrared photodetectors (QWIPs) to produce smart focal
plane arrays in the infrared. In addition, the design is appropriate for
HgCdTe detectors if selected area growth on Si is possible. A preliminary
design in which each pixel is connected to a light-emitting diode (LED) is
also discussed.
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1. Introduction
A conventional image processing system consists of a focal plane array
that delivers signals corresponding to the absolute value of the illumina-
tion at each point in an image, as well as a computer that extracts features
from these data. In this system, the computational cost for processing
images from large arrays in real time can be great. Therefore, it is desir-
able to perform some “early” processing, before the data leave the focal
plane array.

This sort of early processing is also performed by the retina in humans
and other vertebrates. The retina contains five layers of cells, in which
information flows both vertically (from one layer to the next) and hori-
zontally (among neighboring cells in the same layer). The top three layers
of the retina—photoreceptors, horizontal cells, and bipolar cells—are the
best understood, and are the basis for most hardware implementations of
the retina.

In the vertebrate retina, the photoreceptor layer consists of rod and cone
cells, which convert the image light to electrical signals. The horizontal
cells take signals from the photoreceptor layer (vertical information flow),
as well as from neighboring cells (horizontal information flow). The
potential of any horizontal cell is determined by a spatially weighted
average of neighboring cells, with nearest neighbors having the largest
contribution. Each bipolar cell receives signals from one photoreceptor
cell and one horizontal cell and then produces a signal proportional to the
difference between the two. Since the bipolar cell does not respond to the
absolute brightness of the image, only to differences in brightness, the
retina can take widely varying amounts of incoming light and produce a
signal with a much narrower dynamic range that still captures the impor-
tant information in a scene.1

This report describes a design for a smart focal plane array that incorpo-
rates the functions of edge extraction, brightness adaptation, and moving-
object detection. The design is based on a concept first presented by Mead
and Mahowald,2 who built a silicon retina modeled on the distal portion
of the vertebrate retina. Their chip generated, in real time, outputs that
correspond directly to signals observed in the corresponding levels of
biological retinas; the design employed a resistive network to perform
signal aggregation between cells. The design presented in this report is
compatible with complementary metal oxide semiconductor (CMOS)
technology and can be readily fabricated through MOSIS (MOS imple-
mentation system).

1M. A. Mahowald and Carver Mead, Milicon retina, in Analog VLSI and Neural Systems, Carver Mead, ed.,
Addison-Wesley (1989).
2C. A. Mead and M. A. Mahowald, A silicon model of early visual processing, Neural Networks 1 (1988), 91–97.
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2. Cell Architecture
Most hardware implementations of the retina use a resistive network
between horizontal cells to perform the spatial averaging. However,
resistors are difficult to implement in very-large-scale integration (VLSI)
technology. The design reported here relies on carrier diffusion between
the horizontal cells to perform the spatial averaging function.3 Carrier
diffusion is usually undesirable in conventional charge-coupled device
(CCD) arrays, because it leads to crosstalk between the pixels. However,
in this application, we desire crosstalk between the horizontal cells. The
horizontal cells are therefore designed to have a large amount of crosstalk
by being placed all in one big n-well with a common base.

3. Cell Layout
Figures 1 and 2 show one pixel of the smart focal plane array. The layout
was accomplished with L-EDIT™, a powerful PC-based program for
VLSI design. Each pixel contains one photoreceptor cell and one horizon-
tal cell. The cells are pnp phototransistors, with the base current provided
by the photocurrent produced in the base-collector region. The MOS
transistors are used to select the pixel for readout. The photoreceptor cell
is isolated from neighboring cells by being surrounded with a reverse-
bias pn junction. The emitters are held at virtual ground. The horizontal
cell is placed in an n-well that covers most of the pixel, and is shared by
the other horizontal cells in the array. A metal-defined window is placed
over the base regions of the pnp phototransistors to allow roughly equal
illumination of the photoreceptor and horizontal cells.

The photons incident on the n-well base region create electron-hole pairs,
and any holes that diffuse towards the reverse-biased collector-base
region are swept towards the collector by the electric field. The rest of
these holes combine with excess electrons. The photons incident on the
base-collector depletion region also create electron-hole pairs, which are
separated by the electric field in this region, with holes going to the
collector and electrons towards the base. The result is that there are excess
electrons in the n-well base of the photoreceptor and horizontal cells. In
the photoreceptor cell, this base current creates an emitter current ie = Bib.
In the horizontal cell, some of these electrons will diffuse out in the large
n-well base towards other pixels, creating emitter current in neighboring
pixels as well as in the local pixel. Some of these electrons will recombine
before they reach another emitter. This effect can be modeled as a base
resistance.

Consider the situation of only one pixel illuminated. The effective resis-
tance from the local horizontal cell to neighboring cells is proportional to
the distance between them. The collectors (p-substrate) of all the cells are
held at the same negative potential. The emitters are held at virtual

3C. Wu and C. Chiu, A new structure of the 2-D silicon retina, IEEE J. Solid State Circuits 30, No. 8 (August
1995).
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ground. Therefore the base emitter potential Vbe of any neighboring cell is
Vbe of the local cell minus the potential drop across the base resistance.
This potential drop increases with increasing distance from the local
illuminated cell. Since the emitter current follows the Ebers-Moll
equation,

Ie = Isat exp(Vbe/kT),

the ratio of emitter current in a neighboring cell that comes from the
illuminated cell would be exp(–qRbL/kT), where Rb is the effective base
resistance per unit length and L is the distance between the illuminated
cell and the neighboring cell. This is the spatial averaging that is desired
for the horizontal cells.

Figure 1. Layout of
one pixel.

Figure 2. Cross-
sectional view of
pixel.
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4. Array Layout
In the hardware implementation of the retina presented here, the third
layer (the bipolar cells) is implemented by subtraction of the emitter
currents in the photoreceptor cell and the horizontal cell of each pixel. A
prototype 11 × 11 array is shown in figure 3. The pixels are individually
addressable, according to the same scheme as in Wu and Chiu.3 The
circuit diagram for this prototype is shown in figure 4. When the system
selects a row by taking the corresponding control line high, the emitter
currents of all the pixels in that row are connected to lines that go to the
output through a column switch. There are separate lines for photorecep-
tor cell current and horizontal cell current. If the row is not selected, the
emitter currents are shunted to ground. If the column switch is on, the
emitter current is connected to the output; otherwise, it is shunted to
ground. The inputs to the array are, therefore, 11 row control lines, 11
column control lines, positive supply, negative supply, and ground. The
outputs are two currents, corresponding to the emitter current in the
photoreceptor cell and the horizontal cell for the pixel selected.

Ireceptor Ihorizontal

row

row

GND

Vss

Figure 3. 11 ××××× 11 array,
including switching
transistors.

Figure 4. Circuit
diagram for
addressing pixel by
row and column.

3C. Wu and C. Chiu, A new structure of the 2-D silicon retina, IEEE J. Solid State Circuits 30, No. 8 (August
1995).
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5. Amplifier Design
The current from the cells is not sufficient to drive output lines. Also, the
design requires that the emitters be held near ground (virtual ground).
Thus, the design incorporates a current to voltage amplifier (fig. 5) that
keeps the emitters near ground, taken from Wu and Chiu.3 The gain can
be controlled by V1 and V5. Figure 6 shows the amplifier’s physical
layout, and figure 7 shows a SPICE simulation of its characteristics. The
prototype device contains two of these amplifiers, one for photoreceptor
(vertical) cell current and one for horizontal cell current.

Edge detection is provided by the retina architecture. To see this, consider
an image with a large edge contrast. Figure 8 shows the output current
for the photoreceptor cells and the horizontal cells in this case. Since the
photoreceptor cells are isolated from each other, the output of these cells
also exhibits a large contrast. The horizontal cell output is a smoothed
version of the photoreceptor output, where the smoothing is due to the
spatial averaging in the horizontal cells. The difference signal, therefore,
is maximized near an edge.

Figure 5. Circuit
diagram for current
to voltage amplifier
that keeps emitters at
virtual ground.

Figure 6. Layout of
current to voltage
amplifier.

3C. Wu and C. Chiu, A new structure of the 2-D silicon retina, IEEE J. Solid State Circuits 30, No. 8 (August
1995).
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The retina architecture also provides an enhanced signal for moving
objects. This enhancement is due to the difference in response time of the
photoreceptor and horizontal cell networks. It takes some time for the
electrons to diffuse out to neighboring pixels in the horizontal cell net-
work. This time is called the settling or integration time. The integration
time for the photoreceptor cells is the integration time required for a
single pnp phototransistor, which is shorter than for the horizontal net-
work, because these photoreceptor cells are isolated from each other.
Therefore, when the image presented to the focal plane changes, the
difference signal between the two networks will initially be large. It will
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then decrease after the settling time of the horizontal network. By detect-
ing these large current pulses, the system can detect a moving object.

A variation of this architecture can also be envisioned where each pixel in
the array is connected to a light-emitting diode (LED). In this case, the
transistors used to select the pixels would be replaced by a pair of
MOSFETs and a bipolar transistor that would amplify the emitter current
difference and drive the LED. If the LED operated in the visible, the array
output would act like a display. Figure 9 is a circuit diagram for this
architecture, and figure 10 is a conceptual diagram, where the
beamsplitter is a narrow-band reflector that has high reflectivity at the
LED output wavelength.

Figure 9. Circuit
diagram for an array
with output from
each pixel driving an
LED.

focal plane, conceptual

detector + electronics

LED

beamsplitter

image

object

Figure 10. Conceptual
diagram for an array
with pixel output
driving an LED.

photoreceptor horizontal
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6. Conclusion
A silicon retina design is presented that can perform the functions of edge
extraction, brightness adaptation, and moving-object detection. This
design is an improvement over earlier designs, which employed a resis-
tive network to connect the cells. Because the resistive network is elimi-
nated, the chip design is more easily realized with a CMOS process.
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